IAEA Technical Meeting – Primary Radiation Damage (Vienna, Austria / Oct. 1-4, 2012)

Calculation of gamma displacement cross sections / Generation of recoil spectra from ENDF/B-VII

Junhyun Kwon¹, Yong Hee Choi²

¹Nuclear Materials Research Division, KAERI ²Seoul National University Rep. of KOREA

Korea Atomic Energy Research Institute

Outline

- Introduction
 - General aspects of radiation damage
- Gamma displacement damage
- Recoil atom spectra
 - Neutron damage parameters
- Activities of damage simulation study
- Proposed work for CRP

Introduction

- Radiation damage in materials depends on many variables including,
 - Incident particle type, intensity and energy
 - Property of target materials
 - Environments (temperature, pressure...)
 - Irradiation time
- Damage to reactor structure by gamma-ray
 - Displacement damage by gamma, potentially significant depending on reactor designs
 - (Ex.) Displacement damage at 1/4 thickness of ABWR RPV

Damage source	Damage rate (dpa/s)	
Gamma ray	1.0 x 10 ⁻¹³	
Neutron	2.0 x 10 ⁻¹³	JNM 240 (1997) 196

Characteristics of neutron and gamma (KE = 1 MeV)

Characteristic	Gamma (γ)	Neutron (n)	
Charge	neutral	neutral	
Mass (amu)	-	1.008665	
Velocity (cm/s)	$C (= 2.998 \times 10^{10})$	1.38 x 10 ⁹	
Speed of light	100%	4.6%	
Range in air (cm)	82,000	39,250	

 Gamma predominantly interacts with atomic electrons, while neutrons interact with nucleus.

Types of radiation effects on materials

Radiation Effects	Neutron (n)	Gamma (γ)
Impurity production	Directly by absorption reactions	n/a
Ionization	Indirectly	Indirectly
Atomic displacement	Directly, multiple displacement via scattering reaction; cause displacement of recoil atoms	Rare displacement (via Compton effect)*

 ~ Interaction of gamma with atom → Production of energetic electrons → Collision reactions between electrons and lattice atoms may lead to atomic displacement

Introduction

Need to update neutron displacement damage parameters
 → Use of recent ENDF/B library

Nuclear Materials Division

Gamma displacement damage

- Atomic displacement by gamma ray
 - 1. Production of energetic electrons by interaction with target atoms
 - 2. Displacement reaction by scattering collision between electrons and atoms

~Three major reactions to generate electrons

- Photoelectric effect (PE)
- Compton scattering (CS)
- Pair production (PP)
- Scattered atom does not have enough energy (T) to induce displacement cascades.

Compton scattering displacement σ

- Compton scattering
 - Scattering between incident gamma ray and orbital electrons in material
 - Dominant at intermediate energy range (0.1 to 10 MeV)
 - Recoil electron energy depends on θ (scattering angle)

Compton scattering displacement σ

$$\sigma_{\gamma}^{\text{CS}}(\text{E}_{\gamma}) = \int_{0}^{\text{E}_{o}^{\text{max}}} \frac{d\sigma^{\text{c}}(\text{E}_{\gamma},\text{E}_{o})}{d\text{E}_{o}} \cdot \overline{n}(\text{E}_{o}) d\text{E}_{o}$$

$$\frac{\mathrm{d}\sigma^{\mathrm{c}}(\mathsf{E}_{\gamma},\mathsf{E}_{\mathrm{o}})}{\mathrm{d}\mathsf{E}_{\mathrm{o}}} = \frac{\pi \mathrm{e}^{4}Z}{\mathsf{E}_{\mathrm{e}}(\mathsf{E}_{\gamma}-\mathsf{E}_{\mathrm{o}})^{2}} \cdot \left\{ \left[\frac{\mathsf{E}_{\mathrm{e}}\mathsf{E}_{\mathrm{o}}}{\mathsf{E}_{\gamma}^{2}} \right]^{2} + 2\left[\frac{\mathsf{E}_{\gamma}-\mathsf{E}_{\mathrm{o}}}{\mathsf{E}_{\gamma}} \right]^{2} + \frac{\mathsf{E}_{\gamma}-\mathsf{E}_{\mathrm{o}}}{\mathsf{E}_{\gamma}^{3}} \left[(\mathsf{E}_{\mathrm{o}}-\mathsf{E}_{\mathrm{e}})^{2} - \mathsf{E}_{\mathrm{e}}^{2} \right] \right\}$$

: differential scattering cross section for gamma interaction with electrons (Klein-Nishina formula)

$$\overline{n}(\mathsf{E}_{o}) = \mathsf{N}_{a} \int_{0}^{\mathsf{E}_{o}} \frac{\sigma_{d}^{e}(\mathsf{E})}{(-\mathsf{d}\mathsf{E}/\mathsf{d}x)} \mathsf{d}\mathsf{E}$$

: total number of displaced atoms over the range of recoil electron of E_{o}

 $\sigma^{e}_{d}(E)$: electron displacement cross sections from McKinley-Fesbach (Oen's table)

(-dE/dx) : electronic stopping power (eV/cm)

→ Numerical integration over (0, E_o^{max}) gives σ_γ^{CS} .

Photoelectric effect displacement σ

- Photoelectric effect
 - Gamma is absorbed by atom...photoelectron is emitted from one of its bound shells
 - Dominant at gamma energy below 0.1 MeV
 - Assume that all electrons have the same initial energy for E_{γ} resulting from K-shell ionization

Photoelectric effect displacement σ

$$\sigma_{\gamma}^{\mathsf{PE}}(\mathsf{E}_{\gamma}) = \sigma^{\mathsf{PE}}(\mathsf{E}_{\gamma},\mathsf{E}_{o}) \cdot \overline{\mathsf{n}}(\mathsf{E}_{o})$$

 $\sigma^{PE}(E_{\gamma},E_{o})$: photoelectric effect cross section

(a)
$$E_{\gamma} < 0.35 \text{ MeV}$$
 (Sauter's Eq.)
 $\sigma^{PE}(E_{\gamma}, E_{0}) = \frac{3}{2} \phi_{o} \frac{Z^{5}}{137^{4}} \xi^{5} (\Lambda^{2} - 1)^{3/2} \left[\frac{4}{3} + \frac{\Lambda (\Lambda - 2)}{\Lambda + 1} \left(1 - \frac{1}{2\Lambda (\Lambda^{2} - 1)^{1/2}} \cdot \ln \frac{\Lambda + (\Lambda^{2} - 1)^{1/2}}{\Lambda - (\Lambda^{2} - 1)^{1/2}} \right) \right]$
 $\Lambda = \frac{E_{\gamma} - BE - E_{e}}{E_{e}}, \xi = Ee/Eg, \phi_{o} = \text{Thompson cross section (0.6653 b)}$

(b)
$$E_{\gamma} > 2 \text{ MeV (Hall's Eq.)}$$

 $\sigma^{PE}(E_{\gamma}, E_{o}) = \frac{5}{4} \frac{Z^{5}}{137^{4}} \frac{1}{E_{\gamma}} \exp\left\{-\frac{\pi Z}{137} + 2\left(\frac{Z}{137}\right)^{2}\left(1 - \ln \frac{Z}{137}\right)\right\} \left\{\frac{(E_{o}^{2} + 2E_{o})^{3/2}}{E_{\gamma}^{2}}\right\}$
 $\left\{\frac{4}{3} + \frac{E_{o}^{2} - 1}{E_{o} + 2}\left[1 - \frac{1}{2(E_{o} + 1)(E_{o}^{2} + 2E_{o})^{1/2}} \cdot \ln\left(\frac{E_{o} + 1 + (2E_{o} + E_{o}^{2})^{1/2}}{E_{o} + 1 - (2E_{o} + E_{o}^{2})^{1/2}}\right)\right\} \times 10^{-24} \text{ cm}^{2}$
(c) $0.35 < E_{\gamma} < 2 \text{ MeV} \sim \text{extrapolation}$

Pair production displacement σ

- Pair production
 - Gamma is completely absorbed in the field of nucleus... electron-positron pair is created
 - $E_{\gamma} > 1.02 \text{ MeV} (= 2 \cdot E_{e})$
 - Effect of positron on atomic displacement is not included because of its annihilation with electrons (e⁺-e⁻)

Pair production displacement σ

$$\sigma_{\gamma}^{\mathsf{PP}}(\mathsf{E}_{\gamma}) = \sigma^{\mathsf{PP}}(\mathsf{E}_{\gamma},\mathsf{E}_{\circ}) \cdot \overline{\mathsf{n}}(\mathsf{E}_{\circ})$$

 $\sigma^{PP}(E_{\gamma},E_{o})$: pair production cross section

$$\sigma^{PP}(\mathsf{E}_{\gamma},\mathsf{E}_{o}) = \sigma_{co} \cdot \mathsf{Z}^{2} \left\{ \frac{28}{9} \ln \left(\frac{2\mathsf{E}_{\gamma}}{\mathsf{E}_{e}} \right) - \frac{218}{27} \right\} \qquad \sigma^{PP}(\mathsf{E}_{\gamma},\mathsf{E}_{o}) = \sigma_{co} \cdot \mathsf{Z}^{2} \left\{ \frac{28}{9} \ln \left(\frac{2\mathsf{E}_{\gamma}}{\mathsf{E}_{o}} \right) - \frac{218}{27} \right\}$$

 $\sigma_{\rm co}$ = 2.8 x 10⁻⁴ barn

Total gamma displacement cross section

- Effect of pair production on displacement becomes significant at higher gamma energy.

Total gamma displacement cross section

Neutron displacement damage

- Damage starts from PKA (Primary Knock-on Atom) production Interaction of neutron with lattice atom
 - \rightarrow Transfer of neutron energy to lattice atom
 - → Displacement of struck atom (PKA) from lattice sites
 - → Create additional displacements (displacement cascade)
 - \rightarrow Production of point defects (interstitials and vacancies)
- Damage parameters dpa
 - displacements per atom: calculated number of recoil atoms that are displaced from their lattice sites as a result of neutron bombardment
 - total initial energy available to produce damage
 a measure of the maximum damage possible
 - lack of information on net damage

Neutron displacement damage

Calculation of dpa

dpa rate (dpa/s) =
$$\sum \phi(E) \cdot \sigma_d(E)$$

 $\sigma_d(E) = \sum_i \sigma_i(E) \int_{T_{min}}^{T_{max}} f_i(E,T) \cdot v_{NRT}(T) d^{-1}$

where, $\phi(E) =$ neutron spectra of energy E σ_d = neutron displacement cross section σ_i = nuclear cross section for channel i (reaction type) $f_i(E,T)$ = neutron-atom energy transfer kernel for channel i T = recoil atom energy v_{NRT} = secondary displacement function (modified Kinchin-Pease model by Norgett, Robinson and Torrens)

Displacement cross section by neutrons

Determining factor for affecting neutron damage

$$\sigma_{d}(E) = \sum_{i} \sigma_{i}(E) \int_{T_{min}}^{T_{max}} f_{i}(E,T) \cdot v_{NRT}(T) dT$$

- ~ Recoil atom energy (T) is a basic estimator for evaluation
- Number of surviving defects (residual defects) is strongly dependent on recoil energy, T
- Estimation of recoil atom spectra
 - Use of SPECTER computer code
 - Convenient code to calculate damage parameters due to neutron irradiation [dpa, σ_d, recoil spectra, gas production]
 - ~ Old ENDF library (ENDF/B-V)
 - Derive recoil atom spectra R(T) using latest ENDF library

Recoil atom spectra

- Definition
 - ~ Probability that a recoil atom has its kinetic energy (T, T+dT) for a given neutron spectrum $\phi(E)$

$$R(T)dT = \sum_{i} \int_{0}^{E_{\text{max}}} \phi(E) \cdot \sigma_{i}(E) \cdot f_{i}(E,T) dE dT$$

- Variables for R(T) calculation
 - 1. Neutron spectra, $\phi(E)$
 - ~ depends on neutronic environments (reactor type, operation condition etc.)
 - ~ output from commercial codes (MCNP, DORT...)
 - 2. Microscopic cross section, $\sigma_i(E)$
 - ~ Available from ENDF/B library | Need data processing
 - 3. Neutron-atom energy transfer kernel, f_i(E,T)
 - Available from *ENDF/B library* | Need data processing & mathematical derivation

Emitted particle

Recoil atom (T)

Incident neutron (E)

Target

atom

ENDF/B library format

Target material [mat]
 Ex) Fe-26-55 → mat=2628 (Iron, Z=26, A=55)

Data type [mf]

- mf=3 Microscopic reaction cross section data
- mf=4 Angular distributions for an emitted particle (n)
- mf=5 Energy distributions for an emitted particle (n)
- mf=6 Energy-angle distributions for all emitted particles (recoils, n...)
- Reaction type [mt]
 - mt=1 (n,total)
 - mt=2 (n,n) \rightarrow Elastic scattering
 - mt=3 (n,n') \rightarrow Inelastic scattering
 - mt=51 (n,n') \rightarrow Inelastic scattering with 1st excited state of target atom

Ex) mat=2628, mf=3, mt=2 → Microscopic cross section for the elastic scattering reaction between a neutron and Fe-26-55 atom

Energy transfer kernel

- Energy transfer kernel for recoil atoms is NOT usually available directly from ENDF/B library
 - ~ Most data in ENDF are related to neutron's behavior
 - Require a conversion from neutron reaction data to recoil data to obtain f_i(E,T); R(T)
- Data [f_i(E,T)] available from ENDF/B
 - ~ Angular distribution of emitted neutron (mf=4)
 - ~ Energy distribution of emitted neutron (mf=5)
 - ~ Energy-angle distribution of all emitted particles (mf=6)
 - ~ Special treatment for radiative capture (n,γ)
 - ~ Special treatment in the absence of energy transfer kernel

Energy transfer kernel (mf=4)

- Angular distribution of emitted neutron (mf=4)
 - ~ Elastic scattering and inelastic scattering with discrete γ
 - ~ Probability that a neutron of energy E will be scattered into the interval (μ , μ +d μ) is given by:

f(E,μ) dμ

where, μ is the cosine of the scattering angle (θ)

Energy transfer kernel (mf=4)

- Energy transfer kernel f(E,T) for mf=4
 - ~ Conversion of $f(E,\mu)$ into f(E,T)

$$f(E,\mu) d\mu = f(E,T) dT \rightarrow f(E,T) = f(E,\mu) \left| \frac{d\mu}{dT} \right|$$

- ~ Use of momentum and energy conservation law in 2-body collision \rightarrow Derive relationship of E, T and μ
 - In Center of Mass system (CMS) $T = \mu_1 \mu_4 E + \mu_3 (\mu_2 E - Q) - 2\sqrt{\mu_1 \mu_3 \mu_4 E (\mu_2 E - Q)} \mu_c$
 - In Laboratory system (LS)

 $T=\mu_1E+\mu_3E-\mu_3Q-2\sqrt{\mu_1\mu_3EE'}\mu_l$

where $\mu_1 = 1/(1+A)$, $\mu_2 = A/(1+A)$, $\mu_3 = 1/(1+A')$, $\mu_4 = A'/(1+A')$ and μ_c is the scattering cosine in CMS, μ_l is the scattering cosine in LS.

where, A & A' = mass of target atoms before & after collision, respectively Q = de-excitation energy (for elastic scattering Q=0)

Nuclear Materials Division

dμ

Energy transfer kernel (mf=4)

- Energy transfer kernel f(E,T) for mf=4
 - In ENDF/B library, angular distribution of scattered neutron f(E,μ) is given in terms of Legendre polynomial series,

$$f(\mathsf{E},\mu) = \sum_{\ell=0}^{\mathsf{L}} \frac{2\ell+1}{2} \, \mathsf{a}_{\ell}(\mathsf{E}) \, \mathsf{P}_{\ell}(\mu)$$

where, $P_{\ell} = \ell^{\text{th}}$ Legendre polynomial & $a_{\ell} = \text{its coefficient (ENDF/B)}$

→ Plugging f(E, μ) & |d μ /dT| gives f(E,T) for mf=4

$$-\ln CMS$$

$$f(E,T) = \sum_{l=0}^{L} \frac{2l+1}{4\sqrt{\mu_{1}\mu_{3}\mu_{4}E(\mu_{2}E-Q)}} a_{l}(E)P_{l}(\frac{\mu_{1}\mu_{4}E+\mu_{3}(\mu_{2}E-Q)-T}{2\sqrt{\mu_{1}\mu_{3}\mu_{4}E(\mu_{2}E-Q)}})$$

$$-\ln LS$$

$$f(E,T) = \sum_{l=0}^{L} \frac{2l+1}{2} \frac{2\sqrt{\mu_{1}\mu_{3}EE'}}{\sqrt{\mu_{1}\mu_{3}}\sqrt{\frac{E}{E'}}-1} a_{l}(E)P_{l}(\frac{\mu_{1}E+\mu_{3}E-\mu_{3}Q-T}{2\sqrt{\mu_{1}\mu_{3}EE'}})$$

Energy transfer kernel (mf=6)

- Energy-angle distribution of all emitted particles (mf=6)
 ~ Inelastic scattering with continuous γ and
 - (n,p) & (n, α) reactions
 - Energy-angular distribution of emitted particles is given by normalized probability distribution function such as:

 $f(E,\mu,E')d\mu dE'$ or $f(E,\mu,T)d\mu dT$

~ Energy transfer kernel f(E,T) is readily obtained

$$f(E,T)dT = \int_{-1}^{1} f(E,\mu,T)d\mu dT$$

Energy transfer kernel (radiative capture)

- Special treatment for (n,γ)
 - ~ Recoil energy (T) is determined by emitted gamma energy (E_{γ})
 - ~ Consider two different cases:
 - 1) Resolved E_{γ}
 - 2) Unresolved E_{γ}

Energy transfer kernel (radiative capture)

- Radiative capture with resolved E_γ
 - ~ Possible to derive relationship among E, T, E_{γ} and μ through energy and momentum conservation laws

$$T = \frac{E_{\gamma}^{2}}{2(A+1)m_{o}c^{2}} + \frac{E}{A+1} + \frac{E_{\gamma}}{(A+1)m_{o}c}\sqrt{2E}\mu \qquad m_{o}= 1 \text{ am}c$$

~ T and μ has one-to-one correspondence since E_{γ} is resolved and f(E, μ) is available from ENDF/B library

$$f(E,T;E_{\gamma}) dT = f(E,\mu) d\mu$$

$$f(E,T;E_{\gamma}) = f(E,\mu) \frac{(A+1)m_{o}c}{E_{\gamma}\sqrt{2E}}$$

Energy transfer kernel (radiative capture)

- Radiative capture with unresolved E_γ
 - Continuous energy distribution of secondary photon is available from ENDF/B library in the form of normalized probability such as f(E,E_y) dE_y
 - ~ Assume isotropic emission of secondary photons

$$(\mathsf{E},\mathsf{T})\mathsf{d}\mathsf{T} = \int_{0}^{\infty} f(\mathsf{E},\mathsf{E}_{\gamma}) \times \frac{1}{\mathsf{T}_{\max}(\mathsf{E}_{\gamma}) - \mathsf{T}_{\min}(\mathsf{E}_{\gamma})} \mathsf{d}\mathsf{E}_{\gamma} \mathsf{d}\mathsf{T}$$
Probability of γ -ray
emission at E_{γ} (ENDF/B)
Probability that this emission transfers energy
T to target nucleus (isotropic emission)

$$f(E,T) dT = \frac{(A+1)m_{o}c^{2}}{2\sqrt{2m_{o}c^{2}E}} \times \int_{0}^{\infty} \frac{f(E,E_{\gamma})}{E_{\gamma}} dE_{\gamma} dT$$

Energy transfer kernel (charged particle emission)

- No information on f(E,T) in ENDF/B
 - Nuclear reactions involved with charged particle emission except (n,p) and (n,α)
 - ~ Use of theoretical models for deriving f(E,T)
 - 1) Evaporation model
 - 2) Two-body kinematics
 - Recoil energy (T) is determined through energy and momentum conservation laws in LS such as:

$$T = \frac{1}{A+1+a} \left(aE_a - 2\sqrt{aE_aE} \mu_\ell + E \right)$$

where E_a = KE of emitted particle, a = mass ratio of emitted particle to neutron, μ_ℓ = scattering angle in LS (-1 < μ_ℓ < 1)

~ Assume isotropic emission of recoil atoms, f(E,T) is:

$$f(E,T) = \frac{1}{T_{max}(E) - T_{min}(E)}$$

Energy transfer kernel

- Energy transfer kernel for Fe
 - ~ Following information is included in ENDF/B-VII

(n,n) 2derive from $f(E,\mu)$ 4 $(n,2n)$ 16direct $f(E,T)$ 6 (n,n') with discrete γ 51-75derive from $f(E,\mu)$ 4 (n,n') with continuous γ 91direct $f(E,T)$ 6 (n,n') with continuous γ 91derive from $f(E,\mu)$ & $f(E,E_{\gamma})$ with $y(E)$ 12 (n,n) 102derive from $f(E,\mu)$ & $f(E,E_{\gamma})$ with $y(E)$ 12 (n,p) 103direct $f(E,T)$ 6 (n,d) 104derive $f(E,T)$ from model- (n,t) 105derive $f(E,T)$ from model-	Reaction type	mt	Energy transfer kernal	mf
$(n,2n)$ 16direct $f(E,T)$ 6 (n,n') with discrete γ 51-75derive from $f(E,\mu)$ 4 (n,n') with continuous γ 91direct $f(E,T)$ 6 (n,γ) 102derive from $f(E,\mu) \& f(E,E_{\gamma})$ with $y(E)$ 12 (n,p) 103direct $f(E,T)$ 6 (n,d) 104derive $f(E,T)$ from model- (n,t) 105derive $f(E,T)$ from model-	(n,n)	2	derive from $f(E,\mu)$	4
(n,n') with discrete γ 51-75derive from $f(E,\mu)$ 4 (n,n') with continuous γ 91direct $f(E,T)$ 6 (n,γ) 102derive from $f(E,\mu) \& f(E,E_{\gamma})$ with $y(E)$ 12 (n,p) 103direct $f(E,T)$ 6 (n,d) 104derive $f(E,T)$ from model- (n,t) 105derive $f(E,T)$ from model-	(n,2n)	16	direct f(E,T)	6
(n,n') with continuous γ 91direct f(E,T)60 (n,γ) 102derive from $f(E,\mu) \& f(E,E_{\gamma})$ with $y(E)$ 12 (n,p) 103direct $f(E,T)$ 60 (n,d) 104derive $f(E,T)$ from model- (n,t) 105derive $f(E,T)$ from model-	(n,n') with discrete γ	51-75	derive from $f(E,\mu)$	4
(n,γ) 102derive from $f(E,\mu) \& f(E,E_{\gamma})$ with $y(E)$ 12 (n,p) 103direct $f(E,T)$ 6 (n,d) 104derive $f(E,T)$ from model- (n,t) 105derive $f(E,T)$ from model-	(n,n') with continuous γ	91	direct f(E,T)	6
(n,p)103direct $f(E,T)$ 6 (n,d) 104derive $f(E,T)$ from model- (n,t) 105derive $f(E,T)$ from model-	(n,γ)	102	derive from f(E, μ) & f(E,E _{γ}) with y(E)	12
(n,d)104derive f(E,T) from model-(n,t)105derive f(E,T) from model-(n,t)104derive f(E,T) from model-	(n,p)	103	direct f(E,T)	6
(n,t) 105 derive $f(E,T)$ from model -	(n,d)	104	derive f(E,T) from model	-
$(m^{3} l_{0})$ 10 $(m^{3} l_{0})$ from model	(n,t)	105	derive f(E,T) from model	-
(n, He) 106 derive I(E, I) from model -	(n, ³ He)	106	derive f(E,T) from model	-
(n, α) 107 direct f(E,T) 6	(n,α)	107	direct f(E,T)	6

Summary of RASG code (underway)

Module 1	Module 2	Module 3		
 Generation of microscopic nuclear cross sections from ENDF/B-VII Use of NJOY code (Nuclear Data Processing Code) Calculation of energy transfer kernel for each nuclear reaction Calculation of neutron flux Use of neutron transport code (MCNP) 				
$R(T)dT = \sum_{i} \int_{0}^{E_{max}} \phi(E) \cdot \sigma_{i}(E) \cdot f_{i}(E,T)dE dT$				

RASG code → Recoil atom spectra

Recoil atom spectrum (RASG vs. SPECTER)

Recoil atom spectrum

Summary

- Calculation of gamma displacement cross section
 - ~ Account for 3 major interactions including PE, CS and PP
 - ~ Not significant but efficient at producing freely-migrating defects
- Generation of recoil atom spectra using ENDF/B library
 - ~ Develop code by combining three modules
 - Neutron flux, $\phi(E)$
 - Microscopic nuclear cross section, $\sigma_i(E)$
 - Energy transfer kernel, f_i(E,T)
 - ~ Use latest ENDF for calculation

Activities of damage simulation (KAERI)

Multiscale Modeling for Radiation Effects

- Developed integrated models for irradiation embrittlement of RPV steels
- Developing multiscale models for estimating radiation damage to SS (hardening, segregation, swelling etc.)

Proposed Work

Pros and Cons of *dpa* parameter

- Successful as correlation parameter which is linked to materials property
- ~ Universal parameter applicable to any types of radiation
- Indication of total energy available to induce damage to matrix (not permanent damage)
- Depending on used model for secondary displacement
- Development of modified displacement cross section
 - ~ close to real/net damage
 - known fact: lower energy recoils are more effective at producing freely-migrating defects than high energy recoils
 - Useful for prediction of microstructural evolution in multiscale radiation damage study

Proposed Work

Modified displacement cross section

$$\sigma_{d}^{mod}(E) = \sum_{i} \sigma_{i}(E) \int_{T_{min}}^{T_{max}} f_{i}(E,T) \cdot v_{NRT}(T) \cdot \eta (T) dT$$

~ $\sigma_i \& f_i$: derive from recent ENDF/B library

- ~ η(T) : fraction of point defects (FMD+PDC) which escape from in-cascade recombination (cascade efficiency)
 - depends on recoil atom energy (T)
 - results from molecular dynamics (MD) simulations of displacement cascade (large amount of MD results for single elements)
 - need experimental validation*

Proposed Work*

- Relative efficiency for FMD production
 - ~ FMD production data obtained from RIS experiments
 - ~ RIS is caused primarily by FMD migration

Irradiating particle	Target Material	Temperature	Average Recoil Energy (keV)	Relative Efficiency
1.0 MeV H ¹	Ni-Si	350-650 °C	0.73	1
1.8 MeV H ¹	Cu-Au	350 °C	0.83	0.95
1.8 MeV He ⁴	Cu-Au	350 °C	1.7	0.5
2.0 MeV He ⁴	Ni-Si	350-650 °C	1.8	0.48
2.0 MeV Li ⁷	Ni-Si	350-650 °C	2.7	0.37
1.8 MeV Ne ²⁰	Cu-Au	350 °C	13	0.067
1.8 MeV Ne ²⁰	Mo-7Re	1200 °C	16	0.03
1.8 MeV Ne ²⁰	Mo-30Re	1200 °C	19	0.025
3 MeV Ni ⁵⁸	Ni-Si	350-650 °C	51	0.08
3.25 MeV Kr ⁸⁴	Ni-Si	350-650 °C	74	0.02

Reference

- -T. Hashimoto, L.E. Rehn and P.R. Okamoto, Phys. Rev. B 38 (1988) 12868.
- R.A. Erck and L.E. Rehn, J. Nucl. Mater. 168 (1989) 208.
- L. E. Rehn, P. R. Okamoto and R. S. Averback, Phys. Rev. B30 (1984) 3073.

 \rightarrow Normalized to 1 MeV proton irradiation having 100% efficiency with an average energy of 0.73 keV

 \rightarrow Qualitatively compatible with MD simulation results

Thanks for your attention.

Korea Atomic Energy KAERI Research Institute